

フラグメント分子軌道法およびエネルギー 表示法を活用した自由エネルギー計算の GPGPUによる高速化

Acceleration of FMO based MD/ER by GPGPU

Ryota Koga 古賀良太

President of X-Ability Co.,Ltd. (株)クロスアビリティ 共同研究者

古川祐貴(クロスアビリティ)、安田耕二(名古屋大学)

松林伸幸、桜庭俊(京都大学)

20 Jun 2012

近畿化学協会コンピュータ化学部会@大阪産業創造館

X-Ability Co.,Ltd. (株)クロスアビリティ

- オフィス5つ(設立:2008年1月15日)
 国内: Hongo, Tokyo + The K-comp, Kobe
 海外: Thailand, Indonesia, and U.S. branch
- ・事業2つ
 - (1) <u>計算科学(化学分野が主)</u>

GPGPU computation、分子モデリング・メタスケジューラ ・MPIデバッガ・計算用ラップトップの販売、等 (2) センサネットワーク

計算化学で設計した薬

©wikipedia Zanamivir trade name **Relenza**

インフルエンザ阻害剤

©wikipedia Erlotinib hydrochloride (trade name **Tarceva**)

肺がん、膵臓がん

Steve Jobs might have used this to extend his life...

挑戦的テーマ:量子効果を考慮したタンパクー リガンドの結合自由エネルギー計算のプロセス

• (a) FMO based MD

– QM(FMO)電荷のMD

- **(b) MD/ER** – MDトラジェクトリを使ってER計算
- (a) + (b) FMO based MD/ER -> Free energy

- タンパク全体計算は可能だが高精度のリガンドバ インディングスキームは挑戦的研究テーマ

本トークは <u>(a) GPGPU FMO, (b) MD/ER, and (a) +</u> (b) FMO based MD/ERのためのGUI、と流れます。

アブストラクト (a) FMO based MD

- Vectorized PRISM by AVX on Sandybridge CPU
 - HF (Hartree-Fock) : x 3
- DFT by CUDA on NVIDIA GPU
 - J-matrix formation : x 245
 - Exchange correlation : x 4

Benchmark : multicore CPUs

NVIDIA GPU

- ERI J-matrix (Coulomb potential) by CUDA on NVIDIA GPU
 - FMO Environmental Electrostatic Potential : x 8.8-25.0

CPU[AVX]/GPU[CUDA] ハイブリッド演算

- CPUは必ず必要
 - CPU+GPU architectureが一般的

- GPUを使わずSIMD並列化に適しているならば 、SSE/AVXは良い。
 - ・AVXは4つの倍精度演算を同時に行う
 - AVXは理論値ではSSEの2倍速い
- <u>AVXはIntel SandyBridge CPU以降で動作</u>

AVX: Pros and Cons 基本的にベクトルプロセッサ

Pros	Cons
 SSEの倍速 SIMD並列化 FPU演算と同じメインメモリの活用 	 条件分岐 and/or ランダム メモリアクセスには適して いない 自動ベクトル化が単純な 例では効率的

実装計画

AVX

- AVXのintrinsic関数を陽に 使うのを避けるため、C++に よるオーバーロード演算子 を定義
- 最内部ループの分岐を避 けるためのC/C++関数ポイ ンタの利用

GPU

- GPUアーキテクチャに適したベス トチューニングのアルゴリズム
- Fermiコアの共有メモリのL1キャッ シュを活用
- 複雑なGPUスレッド制御(同期、 キュー)のためのpthreadによる CPUスレッド (pthread)
- CPUスレッド並列のための OpenMPの利用
- 単精度・倍精度の混合演算

 $F(C)C = SC\varepsilon$ 固有值問題(Self consistent)

Hartree-Fock SCF (HF-SCF)の手続き

$$\begin{split} F(C)C &= SC\varepsilon \quad \text{:SCF} \qquad (ab \mid cd) = \int \frac{\chi_a(r)\chi_b(r)\chi_c(r')\chi_d(r')}{|r-r'|} dr' dr \quad \text{:ERI} \\ F_{\mu\nu} &= H_{\mu\nu}^{core} + \sum_{a}^{2/N} \sum_{\lambda\sigma} C_{\lambda a} C_{\sigma a}^* \Big[2(\mu\nu|\sigma\lambda) - (\mu\lambda|\sigma\nu) \Big] \\ &= H_{\mu\nu}^{core} + \sum_{\lambda\sigma} D_{\lambda\sigma} \Big[(\mu\nu|\sigma\lambda) - \frac{1}{2}(\mu\lambda|\sigma\nu) \Big] \\ &= H_{\mu\nu}^{core} + G_{\mu\nu} \end{split}$$

Density Matrix (D): Initial guessの後の非線形方程式を解くために毎SCFサイク ルでアップデートされる。

ERIs (ab|cd): 1回だけ計算してメモリに置いとけばいいかもしれないが、大量の O(N⁴) メモリを必要とする。よって、ディスクI/Oを減らすためにこれらは毎サイクルで 再計算される(Direct SCF)。このステップがボトルネックとなる。

Density Matrix × ERI = J-matrix: クーロンポテンシャル行列

Density Matrix × ERI = K-matrix: HF交換行列。大量のレジスタを必要とするためにGPUでの加速が大変難しい。

エルミートガウス基底 $|p] = H_t(x - P_x)e^{-\varsigma(x - P_x)^2} \times (y \text{ factor }) \times (z \text{ factor })$ t-th Hermite polynomial

A Product of two Gaussian functions [ab] is expanded exactly by Hermite Gaussians [p].

ERI calculation in Hermite Gaussians space is faster than that in the normal Gaussians. Because of the communication cost we can't get each ERI [p|q] from GPU.

J-matrixの手続き(クーロン)

Less than 10% of total cost

密度汎関数法(DFT) Wave function of electron (orbital) $[-\nabla_{i}^{2}/2 + v_{eff}(r)]\psi_{i}(r) = \varepsilon_{i}\psi_{i}(r)$ Kinetic energy Coulomb potential from nuclear (Heore) and electron (J) + exchange-correlation potential

Hartree-Fock :
$$F_{\mu\nu} = H^{core}_{\mu\nu} + J_{\mu\nu} + K_{\mu\nu}$$

DFT : $F_{\mu\nu} = H^{core}_{\mu\nu} + J_{\mu\nu} + v_{\mu\nu}$

Exchange correlation $v_{kl} = \int \chi_k(r) \chi_l(r) f(\rho(r), \nabla \rho(r)) dr$

Acceleration of J-matrix + Exchange Correlation is necessary.

DFTの加速 [GPU]

Model, Basis set	Time [sec]	Total energy [a.u]
Paclitaxel(C ₄₇ H ₅₁ NO ₁₄), 3-21G		
GAMESS	929.407	-2912.2041896614
This work	305.709 🗸	-2912.2041830108
Paclitaxel(C ₄₇ H ₅₁ NO ₁₄), 6-31G		
GAMESS	1296.509	-2927.4589680121
This work	370.807	-2927.4589838167
Valinomycin(C ₅₄ H ₉₀ N ₆ O ₁₈), 3-21G		
GAMESS	2186.225	-3772.6098820622
This work	651.099 🖓	-3772.6098692643
Valinomycin(C ₅₄ H ₉₀ N ₆ O ₁₈), 6-31G		
GAMESS	3010.225	-3792.2248655337
this work	800.743 🖊	-3792.2248881864

DFT計算の詳細 [GPU]

Valinomycin, BLYP/3-21G unit:sec

	GAMESS	This work	speedup
HF Fock Matrix formation	248.927	76.241	x 3.27
DFT J matrix formation	619.465	2.529	x 244.94(╳)
DFT exchange correlatin matrix formation	972.364	218.387	x 4.45
total	2186.225	651.099	x 3.36

※カーテシアンガウス基底で陽に計算されるため、オリジナルの GAMESS J-matrixがとても遅い

PRISMの実装 (1) [AVX]

- PRISM Algorithm
 - ✓ ERIを評価する最速アルゴリズムの1つOne of the fastest algorithms to evaluate ERIs.
 - ✓Gaussianが採用している
 - ✓"パス"に従い漸化式を使ったERIにBoys 関数
 [0]^(m) ∝ ∫uⁿ exp(-Tu)duを変換する。異なった短縮長や軌道角運動量の最適経路を選択する。

PRISMの実装 (2) [AVX]

Gill and Pople(1991)

全ての漸化式

(Integral A) = a * (Integral B) + b * (Integral C)

同じ漸化式が同ーシェル型(軌 道角運動量、bra/ketの短縮 長)の中間積分に適用される。 SIMD並列化に向いている。

PRISMの実装 (3) [AVX]

```
class double4
                                     # operator overload
public:
 double4& operator=(double d){
   m_d = _mm256_set1_pd(d);
   return *this;
  }
 double4 operator+(const double4& dd){
   return double4(_mm256_add_pd( m_d, dd.m_d) );
  }
 // ... define other operators
    _m256d m_d;
```


弊社(XA)とGaussian社によるPRISMの違い

	Gaussian	X-Ability
What is it	それぞれのシェル4つ組をbra/ket 短縮シェルの型と数によって、漸 化式を動的に生成する。	全てのPRISMの"パス"のソースコー ドを生成し、それぞれの計算対象に 対して動的に適切な関数ポイントを 設定する
Pros	昔ながらのベクトルプロセッサに 合うように漸化式を使うことで、 シェル4つ組を同時にループで処 理することができる	8つのシェル4つ組が同時に処理され、 結果的にキャッシュミスを避ける ことができる
Cons	キャッシュミスが生じるのでスカラ プロセッサ向きではない。コンパイ ラはプログラムを効率的に最適化 できない。	コードは数万行になり、バイナリは 300-400MBの容量がある

Hartree-Fockの計算結果 [AVX]

	Time [sec]	Total energy [a.u]
Paclitaxel, 3-21G		
GAMESS	184.048	-2895.7814570171
This work	78.271 🗸	-2895.7814570169
Paclitaxel, 6-31G		
GAMESS	324.386	-2910.6633340322
This work	153.632	-2910.6633340179
Valinomycin, 3-21G		
GAMESS	476.829	-3750.9205018138
This work	155.481 🞺	-3750.9205017267
Valinomycin, 6-31G		
GAMESS	752.839	-3770.0595984968
this work	323.098 📈	-3770.0595984236

10⁻⁷hartree is enough accuracy. We replaced GAMESS ERI with XA PRISM.

環境静電ポテンシャルの高速化(ESP) フラグメントA フラグメント B ・ ERI J-matrixを活用 cd: basis on 隣接フラグメント

タンパクをアミノ酸毎の小さい単位に分解

Conventional SCF (ERIはディスク保存) は普通のアミノ 酸サイズで有効 (# of basis < 180).

FMOでERIはボトルネックではない

環境静電ポテンシャルが支配的

• J-matrix 加速プログラムの活用 by

テストモデル

インスリン (PDBID:2HIU)

Small Protein 44 amino acids

システム条件

(1) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX580 x 2</u>, 32GB, CUDA 4.0

(2) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 4</u>, 32GB, CUDA 4.0

(3) Intel Core i7-3930K @3.2GHz (6 core) , <u>**GTX680** x 2</u>, 32GB, CUDA 4.0

+ Intel Composer XE 12.0 + MKL 10.3

インスリンの全体エネルギー計算

	Time [sec]	Total Energy [a.u.]
Original GAMESS	3279.944	-21635.4488652520
Our GPGPU work	790.527	-21635.4488649211

(1) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX580 x 2</u>, 32GB, CUDA 4.0
(2) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 4</u>, 32GB, CUDA 4.0
(1) + (2)

- 44フラグメントの全体エネルギーのエラーは小さい
- 各アミノ酸のエネルギーはほぼ一致している

FMO2-ESP and HF-SCF 全体計算

	GAMESS	This work	speedup
ESP part(GPU)	2571.490	170.897	x 15.0
HF-SCF part(host)	708.454	619.630	x 1.14
Total	3279.944	790.527	x 4.15

(1) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX580 x 2</u>, 32GB, CUDA 4.0
(2) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 4</u>, 32GB, CUDA 4.0
(1) + (2)

ESPの加速率は全体加速率よりダイブ良い HF-SCFはオンメモリ計算(GPUによるDirect SCFより速い)

アーキテクチャの比較(FMO2 HF-SCF)

	Time [sec]	Total Energy [a.u.]
Original GAMESS	7026.264	-21635.4488652592
Our work [GTX580 x 2](1)	1670.931	-21635.4488649623
Our work [GTX680 x 2](3)	1708.522	-21635.4488649862

(1) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX580 x 2</u>, 32GB, CUDA 4.0
(3) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX680 x 2</u>, 32GB, CUDA 4.0

FMO2 HF-SCF 6-31G* (d-orbital)

	ESP [sec]	Total time [sec]	Total energy [a.u.]
Original	19915.745	25360.740	-21643.9995562825
Our GPGPU work	1138.558	5730.080	-21643.9995557664
speedup	x 17.5	x 4.4	

(3) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX680 x 2</u>, 32GB, CUDA 4.0

FMO2 HF-Gradient 6-31G

	ESP [sec]	Total time [sec]	Total energy [a.u.]
Original	13234.570	20222.516	-21635.4478224023
Our GPGPU work	1497.256	7917.169	-21635.4478217928
speedup	x 8.8	x 2.5	

(3) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX680 x 2</u>, 32GB, CUDA 4.0

FMO3 HF-SCF 6-31G

	ESP [sec]	Total time [sec]	Total energy [a.u.]
Original	53898.693	72271.047	-21635.6075667898
Our GPGPU work	2589.916	19302.927	-21635.6075665173
speedup	x 20.8	x 3.7	

(3) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX680 x 2</u>, 32GB, CUDA 4.0

FMO3は多体効果を考慮できる

FMO3 HF-SCF 6-31G*

	ESP [sec]	Total time [sec]	Total energy [a.u.]
Original	201450.867	329469.507	-21644.1937717434
Our GPGPU work	8055.506	84456.268	-21644.1937714115
speedup	x 25.0	x 3.9	

(3) Intel Core i7-3930K @3.2GHz (6 core) , <u>GTX680 x 2</u>, 32GB, CUDA 4.0

パフォーマンス・サマリー Results & Discussion

	AVX	GPU
Summary of performanc e results	Hartree-Fock x 3 by Vectorized PRISM	DFT J-matrix formation: x 245 Exchange correlations: x 4 FMO ESP : x 8.8-20.8
Discussion	予想がたたない実装 コスト	レジスタ不足で単純並列化は難 しい 短縮ガウス基底を使ったホストと GPUの間の転送コストが低い

GPGPU is better regarding price performance ratio.

GPGPU FMOのまとめ

- ・ <u>GTX680(kepler) はGTX580より少々遅いが、、、</u>
 - レジスタ不足がボトルネックなので、十分なCUDAコアを生か せてない可能性
 - GTX580 -> GTX680 clock x 2/3, core x 3, FLOPS x 2
 - 同時に動かせるブロックが少なく、メモリレイテンシを隠ぺいできていない。コア数が過剰になっている。
 - 倍精度が遅い(演算あたりクロック数は上がった)

※CUDA 5.0 でないとkeplerのポテンシャルは引き出せない(が、現状CUDA 5.0/こバグがある)という意見もある。

 ESPの加速はFMOのエネルギーおよびGradのどちらの 加速にも効いている

エネルギー表示法 (ER) (b) MD/ER

- 2桁オーダー高速で同等の精度である自由エネル
 ギー計算方法
- ermod <u>http://sourceforge.net/p/ermod/wiki/Home/</u>
 - ーナショプロソフト(現時点でGromacs, NAMD, Amberの出力に対応)
 - 超臨界流体、イオン液体、ミセル、脂質膜に適応可能
 - タンパク質の全原子自由エネルギー計算も可能
 - <u>高精度リガンドバインディングは理論的チャレンジが必要</u>

エネルギー表示溶液理論の構成

統計平均

X-Ability エイルモー表示浴 スナップショット配置における2体 エネルギー分布(ヒストグラム)

 $\hat{\rho}^{e}(\varepsilon) = \sum_{i} \delta(\varepsilon - v(\psi, \mathbf{x}_{i}))$

ψ: 溶質の座標ⁱ
 x_i: i番目の溶媒分子の座標
 v(y,x): 溶質-溶媒間の2体相互作用
 ε: 2体エネルギー値(分布関数の横軸)

- ✓ 同じ溶質−溶媒相互作用を持つ 配置(構造)をグループ化(射影)する
- ✓ どのような近似でも、同じ溶質 溶媒相互作用を
 -5 0 2(本エネルギー
 -5 0 2(本エネルギー

✓ どのようなポテンシャル関数に対しても1次元の座標 ⇒ 計算スピード向上

- ✓ 溶質および溶媒分子が、共に、全体として1つのものとして扱われる
 ⇒ 内部自由度 ⇒ 外場 ⇒ 不均一系・QM/MM系
 ⇒ 低密度/濃度極限 ⇒ 超臨界流体・混合溶媒
- ✓ DFT(密度汎関数理論)的な理論構成 ⇒ 系統的定式化

溶媒和自由エネルギー $\Delta \mu = -k_B T \log \left\langle \exp\left(-\beta \int d\varepsilon \, \varepsilon \hat{\rho}^e(\varepsilon) \right) \right\rangle_{\text{reference solvent}}$

「溶質」「溶媒」「溶媒和」概念の拡張 ~統一的な概念構成に向けて

「溶媒」=溶液系に最初からあるもの 「溶質」=溶液系に後から入ったもの

溶媒和

電子の付加 (還元)

溶液理論構成の要件

▶ 内部自由度のある分子

- 気体様低密度(1対1の「結合」)から 液体様高密度領域をカバー
- ▶ 量子論との結合(QM/MM法)
- ▶ 非物理的挙動を導かないような数学的に堅牢な定式化

- 疎水性溶質の分布は、ミセル中でより局所的
- ミセル・膜内部と水領域での、溶質の安定性の逆転

結合寿命も評価可能

ERの 欠点

- 高速化近似法であるため、FEPのような厳密手法に 比べると、適用範囲が現時点では狭い
 - 現時点でリガンドバインディングはうまくいってない(サン プリングスキームの改善を検討中)
 - ・現状、一番良い結果でR²=0.4程度
 - ρとρ₀が重なっていないと使えない(粗視化モデルとの融合により 解決可能?)
- 溶媒和自由エネルギーしかやらない
- MDの欠点を改善するものではなく、引き継ぐ – MDとの組み合わせによるため、力場問題は存在
- 理論がちょっと難しいが、理解してなくても使える

GUI for (a) + (b)

- Winmostar開発(及び販売)を徐々にクロス アビリティが引き継いでいる
 - 64bit化は成功
 - Macintosh対応中
 - MD GUI対応中
 - 各種HPCIにジョブ投入
 - 商用版リリース予定時期は2013年1月以降
 - その前も順次アカデミックフリー・個人版はリリース

Winmostarは計算化学のGUI

 \mathbf{X} X-Ability

3500

3000

<u> </u>	A
6	W O H H

AMI EF PREGISE GNORM=0.05 NUINIER GRAPHF							
Wi	nmostar						
0	0	0 0	0 0	0	0	0	0
Н	1.1	10	0 0	0	1	0	0
Η	0.96	1 101.7031	10	0	1	2	0

PREATOR ANADA A AF NATURED ADADUS

2500

1.860 debye

2000

分子軌道法計算

/	AM1 EF PRECISE GNORM=0.05 NOINTER GRAPHF								
	Winmostar								
	ATOM NUMBER (I)	CHEMICA SYMBOL	計算	新	果		€ 7		NC
	1	0							
	2	Ĥ	1 10000 *				1		
	3	H	. 96000 *	101	. 70310 *		1	2	
	1	CARTESIA	N COORDINATES						
	NO.	ATOM	Х	Y	Z				
	1	0	. 0000	. 0000	. 0000				
	2	Н	1.1000	. 0000	. 0000				
	3	Н	1947	. 9400	. 0000				
	H: (AM1)	: M.J.S.	DEWAR ET AL, J	. AM. CH	IEM. SOC. 1	07 3902-3909	(1985)		E
	0: (AM1)	: M.J.S.	DEWAR ET AL, J	. AM. CH	IEM. SOC. 1	07 3902-3909	(1985)		0

現時点のWinmostarの特長

- 1. 軽い
- 2. 簡単(分子モデリング)
- 3. Gaussian、GAMESS,MOPAC対応
- 4. ソルバーの起動(PC、Linux機)
- 5. 対応が早い
- (質問、不具合、新機能の要望)

Tencube/WMからLinux機へのジョス投入

 $\mathbf{X} \xrightarrow{\text{Ability}}_{2 \square \exists \mathcal{T} \not\in \forall \forall \neq 1}$

ご静聴ありがとうございました